A RE-DETERMINATION OF THE CRYSTAL STRUCTURE OF IODINE OXIDE TRIFLUORIDE

A. J. EDWARDS AND P. TAYLOR

Chemistry Department, University of Birmingham, P.O. Box 363, Birmingham, B15 2TT (Great Britain) (Received July 9, 1973)

SUMMARY

The crystal structure of iodine oxide trifluoride has been re-determined and the oxygen atom assigned to a different position from considerations of the detailed molecular geometry.

INTRODUCTION

During an investigation of the interaction of I_2 , IF_5 and SbF_5 in Pyrex apparatus, some colourless crystals suitable for X-ray examination were obtained. When crystallographic data collection was almost complete, the crystals were identified as IOF₃, by a comparison of unit-cell dimensions with those previously reported by Viers and Baird¹. Since the molecular geometry previously reported seemed inconsistent with the assigned position for the oxygen atom, and since the authors claimed to have distinguished oxygen from fluorine by X-ray methods alone in the presence of the iodine atom, we have completed our re-determination of the structure and report the results here.

EXPERIMENTAL

Preparation of iodine oxide trifluoride

During an attempt to crystallise $[I_2]^+[Sb_2F_{11}]^-$ (ref. 2) from IF₅ solution directly in thin-walled Pyrex capillaries, colourless needle crystals were observed after the solution had been standing for some weeks. When these crystals were scaled in small sections of capillary under vacuum, they decomposed over a period of 1–2 days. However, in the presence of small amounts of IF₅, the crystals were stable for several weeks. IOF₃ is reported ³ to decompose on heating above 110 °C:

 $2IOF_3 \rightarrow IO_2F + IF_5$

and to be regenerated by refluxing IO_2F in IF_5 . The behaviour reported above suggests an equilibrium at room temperature in the presence of glass:

 $2IOF_3 \Rightarrow IF_5 + IO_2F$

Crystal data

Iodine oxide trifluoride (mol. wt. = 200) is orthorhombic, a = 5.70(1), b = 5.62(1), c = 10.49(2) Å (Viers and Baird¹ report a = 5.689, b = 5.638, c = 10.463 Å), U = 336 Å³, Z = 4, calculated density = 3.95 g cm⁻³, F(000) = 352; space group $P2_12_12_1$ (D_2^4 , No. 19) from systematic absences: h00, $h \neq 2n$, 0k0, $k \neq 2n$ and 00l, $l \neq 2n$. X-Ray measurements were made using CuK α ($\lambda = 1.5418$ Å) and MoK α ($\lambda = 0.7107$ Å; $\mu = 101$ cm⁻¹) radiations and employing single crystal precession and Weissenberg photographs.

Structure determination

Integrated intensities were collected about the *a* axis (layers 0-4 *k l*) by use of MoK α radiation and a Nonius integrating camera. The relative intensities of 306 independent reflections were measured with a photometer of similar design to that described by Jeffery⁴, and were corrected for Lorentz and polarisation factors. Calculation of a three-dimensional Patterson map, and a subsequent electron-density map, gave the positions of the iodine atom and the four light atoms. Refinement of the positional and isotropic temperature parameters and layer scale factors was carried out by full-matrix least-squares methods, using scattering factors for neutral atoms⁵ for the structure factor calculations. The function $\Sigma w(|F_0| - |F_c|)^2$ was minimised in the refinement with unit weights throughout.

One of the light atoms was closer to iodine than the other three and was tentatively assigned as oxygen. Refinement proceeded to R = 0.075. After application of an absorption correction for a rectangular block crystal (dimensions $0.15 \times 0.10 \times 0.05$ mm), R was reduced to 0.060 and refinement was considered complete. The final parameter shifts were $< 0.1\sigma$ and an analysis of the variation of Δ^2 with increasing $\sin \theta/\lambda$ and with increasing $|F_0|$ was satisfactory.

Since Viers and Baird¹ had assigned light atom identities on the basis of separate refinements of models having the oxygen atom in the two alternative equatorial positions, we refined the model (referred to as VB) with the oxygen atom in the alternative position [F(3)]. This VB model refined to R = 0.061, essentially the same as previously. However, although the original model showed no significant difference between the temperature factors for the four light atoms, the VB model showed temperature factors significantly lower for the "oxygen" atom and significantly higher for "F(3)". This suggests an attempted compensation by the refinement process for the incorrect assignment of scattering factors. Although this evidence is insufficient to confirm the light atom identities, and although it seems unlikely that oxygen can be distinguished from fluorine by X-ray

methods alone in the presence of the iodine atom, it is in agreement with the stereochemical considerations described below.

Observed and calculated structure factors are listed in Table 1, final positional parameters and isotropic temperature factors in Table 2 and interatomic distances and angles together with the corresponding VB values in Table 3.

DISCUSSION

The interatomic distances and angles shown in Table 3 are in excellent agreement with those reported by Viers and Baird, the differences in all cases being not statistically significant. We do not consider that light atom identities can be assigned from the X-ray measurements directly, as discussed above, and we have therefore assigned the oxygen atom from the stereochemistry.

If initially only the nearest neighbours to the iodine atom are considered, the structure consists of IOF_3 molecules. Valence-shell electron-pair repulsion (VSEPR) theory⁶ predicts a trigonal-bipyramidal arrangement for the molecule, with the multiply-bonded oxygen atom and the non-bonding electron pair (which have greater repulsive effects than the fluorine atoms) in equatorial positions. The molecular shape shown in Figure 1 conforms to this prediction, with F(1) and F(2) in axial, and O and F(3) in equatorial positions.

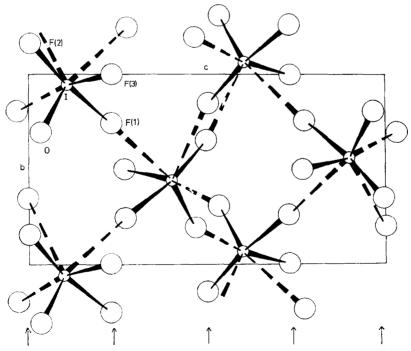


Fig. 1. Projection of the structure down [100]. The arrows indicate planes of approximately close-packed atoms.

OBSERVED AND CALCULATED STRUCTURE FACTORS

×			1-1													
	1	19	Pc 53.0	+	h	×	1	10	P c	Ý	h	k	1	P.	7 c	1
•		57.3	113.5	180			2	38.3	35.9	205	,		13	41.2	41+3	27
	10	52.8 77.3	50.9	ő			4	32.3	26+2	276	,	1	1 2	55.3	91+5	18
	iz	22.3	19.7	0			67	20.7 54.9	21+3 55+7	48 85			Э	49.0	46.3	3
	. 14	39.9	40+3	180				27.6	24.7	740			4	52.8	49.1	35
•	3	35.8	34.7	270	1		•	31.1	27.8	109			;	44.5	38+5	14
	4	75.5	71+7	90 270	•	•	ī	40.9	41+4	206			é	28.2	25•1 29•6	34
		55.6 70.1	51+6	270			23	39.5	40+3	10			,	50.3	51+5	18
		100.0	**.*	270				36.7	19+6	322	э	2	11	34.8 98.4	41+7	27
2	12	49.8	54+1	90			5	42.4	42+4	323		-	i i	61.7	40+5	29
	1	*2.6 \$0.7	94.6	100			î	34.2	20.9	211			ż	61.7 47.6 82.4	47.5	30
	1	3 96.7	94.0 98.6	100	1	7	2	37.2	40.5	270			4	51.2	49+2	,
	;	76.9	76.3	180			4	38.5	14+6 38+2	235			5	21.2	19.4	19
		38.5	78.5 34.8	0				36.3	31+3	79			,	51.5	53+3	•
	10	42.2	55+1		1 2	ě	2	42.4	36-1	270				28.1 27.5 48.2	28+5	23
,	2	43.2 40.2 64.3	80-0 80-4	*0		•	4	56.5	87.0	5			10	48.2	29.6	27
	3	42.7	41+3	270			5	52.8	120+1 52+4 31+4	270	,	3	- 11	30.6	28.4	2.0
	;	27.2	27+2	270			;	34.1	51.4	270	,		0	18.9	12+6	27
		40	115+1 36+1	270			10	44.2	45+6	90			2		92.6	14
		57.5	54.5	*0			11	32.1	38+4	90			3	31.2	23.8	?
	11	23.2 72.9	47+6	ō	2	- I.	23	89.6 124.3	#1+6 15+0	244			5	34.9 40.3 27.2	34-0	17
	1	72.9	71.0	180				55.2	51+6	284			7	40.3	39.8	27
	2	27.0	24+8	180				36.6	51+6 38+7 52+8	72			8	61.9 30.4	58.5	10.
	7	71.7	74.0	ō			* 7	62.4	÷1+7	2			12	30.4 37.9	25.2 38.6	35
	- 11	29.9	34+1	0			8	58.9	59.9	108	э	4	0	74.0	74+5	27
_	13	37.4 35.9 75.1	40.7	160			10	37.8	37+4	341			1	25.1	23+2	1:
3	2	24.5	30.1	160 90 270			- 11	Z9.9	32.7	207				70.4	71+5	
	3	23.3	21.8	270			12	26.7 24.4	37+1 33+4	257			-	32.7 63.9	28.6	17
		43.3	47.4	270	2	2	0	71.1	73.9	180			10	45.8	48.4	2.
	- 11	29.1	34.5	*0			1	87.1 74.9	84+6 71+5	+2 247	Э	5	2	\$3.8	41.7	35
•	•	45.0	42.4	100			3	58.1	54+0 +4+1	35+			•	38.2	34+2	1.0
		49.0	47.4	180				44.0 47.1	64+1 64+6	318				35.4	43+8	170
		38.2	40+4	0			÷	55.3	55.9 47.7	31 162	•	•	ů	48.4	44.3	270
	;	38.8	34.5	0			7	44.8	47.7	162			2	24.8	18+3	221
7	5	48.9	45++	270			•	40.2	42•0 37•1	128			3	39.5	36+0 32+1	103
	4	30.4	26.6	270			10	35.4	35.1	184	э	1	ĩ	38.4	35.8	
	ō	38.2	34+1	180			12	34.7	35.8	41 254		۵	5	34.7	33.5	176
٥	4	39.3	33.7		2	3	•	05.8	82.7	140	•	v	;	101.0	104.2	90
•		48.8	88.3	380			2	61.8 51.0	57.9 51.0	262			;	24.0	23.0	270
	7	53.3 55.7	50+4	270			5	49.4	49.5	144			- 11	48.8	54+8	270
	a		51.8	0			- :	45.9	64.9	340	4	1	0	24.8	25+5	0
,	12	44.0	55.9	130			5	58.3	\$2+4 47+3	10			ż	44.4	46+3	330
•	5	44.7	44+2 58+8	251				33.9	30++	40			3	*3.4	90+3	
	:	*3.6		270			•	44.6	43.0	290			:	27.0	40.5 22-1	181
		89.2	66+5 87+7	274			10	42.7 32.1	44.2	181 248			7	66.2 34.3	72+2	177
	7	38.5	34.4	104	2		1	40.2	41+6	10				34.3	33.4 31.0	175
	10	42.2	43+1	58 73			2	67.1	68+6 66+3	262			13	38.2 69.1	36.4	
2	•	\$3.4	43+0	*0			4	37.0	36+0	283	•	2	1 2	67.1	67.9 70+1	273
	2	56.3	56.5	1.1			;	42.2	39.9 48.6	*3 175			з	20.0	21+6	
	з	91.9	90.6	205				53.3	51.2	1/5 88			\$	41.5	39.9 55.9	
	•	46.2 94.7	46.3	205 350	2	,		53.3	51+2	88 172			٠	34.8	33.2	91 289
	÷	54.2	53.9	342	4	,	î	54.0	55+2 44-4	100			7	18.4	20.0	105
	8	32.7	30+5	330			2	22.5	21+1 47+2	113			9	15.2 30.7	41.40	266
	•	43.4	67.5	202			;	45.1	47+2	15			11	30.7	25.4	272
	11	30.4	35+2	156			6	40.4	43+5	350	4	3	۵	\$2.0	94.9	
з	۰	59.6	59.6	90			10	26.3	27.9 30.6	254			2	*2.0	23+2	352
	1	63.8 47.3	04-5 43+6	291	2		0	26.5 34.0	27+3	0			3	18.5	22+2 30+1	350
	2	101.9	100+4	272			2	34.0	37+5 36+0	303			4	55.8	30+1	179
	4	44+3	46.4	226			à	33.6 37.2 33.4	30+0 32+4	286			,	51.9	56+0 30+0	101
	* * 7	22.7	18+1 47+9	303			\$	33.4 24.4	32.4	220				36.9	21+4	11
	7	47.5	47.9	303			,	26.1	23.0 27.2 25.9	93 165		4	10	46.8	46+2 72+1	358 85
	- 11	42.J JJ.1	40.5	74 292	2	7	;	22.4		329		·		66.4 39.8	39.2	89
4	Ŷ	37.C 92.9	37 - 1 95 - 1	90 178			5	28.1	30+4	103			ŝ	39.3	42.0	276
	- 1	37.4	95+1 37+5	272	2	8	0	23.9	29+0	0			12	38.5	34+8	271
	5	74.1	78.8	i	э	0	;	20.5	22+8	272	•	5	° 2	55.5	58.2	0
	;	36.4	32+4	265		-	4	124.1	34+8	0			4	48.4		177
	10	28.1	22.8	96			5	20.8	20.5	90			6	42.4	49.2	183
,	- 11	34.0	34.5	179			7	85.8 50.5	30.9 89.6 49.0	180 90 90		•	16	39.2	36.7	359
,	ŭ	44.9	28.4	259			•	50.5 36.2	49.D 34.4	90 270			ż	38.1	38.0	89
		-	-				••			270			4	24.2	22+8	270
														33.3	31+9	263
											٠	7	1	27.7	22+4	181
															35.2 25.6 29.2	90
											•		\$	15.1 28.8	25+6	270

TABLE 2

Atom	x/a	y/b	z/c	<i>B</i> (Å ²)	
I	0.1846(6)	0.0611(4)	0.1006(2)	1.45(4)	
0	0.3209(99)	0.3019(49)	0.0330(26)	3.14(57)	
F (1)	0.0516(72)	0.2566(44)	0.2306(24)	3.37(52)	
F(2)	0.3665(52)	-0.1558(41)	0.0043(23)	2.84(51)	
F(3)	0.3907(54)	0.0008(44)	0.2313(23)	3.37(62)	

FINAL ATO	MIC POSITIC	NAL AND	THERMAL	PARAMETERS	WITH
ESTIMATED	STANDARD	DEVIATIO	NS IN PAR	ENTHESES	

TABLE 3

interatomic distances (Å) and angles (degrees) with estimated standard deviations in parentheses $\!\!\!\!*$

	Present work	VB results		Present work
I-O	1.71(4)	1.74(2)	IO ^I	2.62(6)
I-F(1)	1.91(3)	1.90(2)	IF(1 ^{II})	2.81(3)
I-F(2)	1.89(3)	1.83(2)	IF(2III)	3.11(3)
I-F(3)	1.84(3)	1.82(2)	O F(1)	2.59(5)
OF(2)	2.60(4)		OF(3)	2.71(4)
F(1)F(3)	2.41(5)		F(2)F(3)	2.54(3)
OOI	2.99(2)		F(1)OI	3.08(5)
F(2)OI	3.71(6)		$O^{I}F(2^{III})$	3.07(3)
F(1)F(1 ^{II})	2.90(2)		$F(1^{II})F(2^{III})$	2.96(4)
$F(2)F(2^{III})$	3.04(2)		F(3)F(1 ^{II})	2.90(5)
F(2)F(1 ^{II})	3.70(4)		OF(3IV)	3.17(5)
$F(3)F(2^{V})$	3.33(4)		F(2)OVI	3.29(6)
F(1)F(2 ^I)	3.50(4)			
O - I - F (1)	91.2(1.4)	90	O–IO ^I	84.6(1.0)
O-I-F(2)	92.3(1.5)	95	O-I-F(111)	163.7(1.1)
O-I-F(3)	99.5(1.8)	98	F(1)-I-O ^I	84.2(1.3)
F(1)-I-F(2)	165.9(1.3)	168	F(2)-I-OI	109.7(1.2)
F(1)-I-F(3)	80.0(1.3)	82	$O^{I}-I-F(1^{II})$	97.9(1.1)
F(2)-I-F(3)	85.9(1.2)	86	F(3)-I-OI	163.7(1.1)
$F(1)-I-F(1^{II})$	73.1(1.3)		$F(2)-I-F(2^{III})$	70.1(1.2)
$F(2)-I-F(1^{II})$	101.9(1.0)		$F(1^{11})-I-F(2^{111})$	59.7(1.3)
F(3)-I-F(1 ^{II})	73.9(1,1)		$O^{I}-I-F(2^{HI})$	64.1(1.6)
I-OI-II	128.3(1.1)		$I-F(1^{II})-I^{II}$	173.0(1.8)
$I-F(2^{III})-I^{III}$	170.0(1.7)			

* The Roman numerals as superscripts refer to atoms in the positions:

I: $-\frac{1}{2} + x$,	$\frac{1}{2} - y$,	— <i>z</i>	IV: $-x$,	$\frac{1}{2} + y$,	$\frac{1}{2} - z$
II: $-x$,	$-\frac{1}{2} + y$,	$\frac{1}{2} - z$	V: $\frac{1}{2} - x$,		
III: $-\frac{1}{2} + x$,	$-\frac{1}{2}-y$,	<i>z</i>	VI: $\frac{1}{2} + x$,	$\frac{1}{2} - y$,	<i>—z</i>

Our assignment of the oxygen atom position gives an I–O distance of 1.71 Å, significantly shorter than the equatorial I–F distance of 1.84 Å or the axial distance of 1.90 Å. This is compatible with a number of structures of compounds containing M–F and M–O terminal bonds, where the bonds to oxygen are significantly shorter than those to fluorine. This I–O distance is very similar to the I–O distance of 1.72 Å recently reported⁷ in CsIOF₄, and comparable with the mean (I–O) terminal bond length of 1.79 Å in I₂O₅ and 1.777 Å in KIO₃, HIO₃, respectively^{8,9}.

The mean I–F distance of 1.88 Å in IOF₃ is close to those reported for IF₅. Electron-diffraction studies of the pentafluoride itself give an I–F distance¹⁰ of 1.86 Å, and in the molecular adduct XeF₂,IF₅ crystallographic results¹¹ show a mean I–F distance of 1.88 Å. The I–F distance of 1.97 Å in the IOF₄⁻ anion is considerably larger⁷, but this may be due to the overall negative charge.

On VSEPR theory, a multiple M–O bond should have a greater repulsive effect on neighbouring ligands than a M–F bond. The F_{axial} –I–O bond angles would therefore be expected to be larger than the F_{axial} –I– $F_{equatorial}$ angles in IOF₃. On our model this is so, with mean values for the angles of 91.7° and 83.0°, respectively. The latter angle is identical with the mean F_{axial} –I– $F_{equatorial}$ angle in the IF₄⁺ cation ¹² of [IF₄]⁺[Sb₂F₁₁]⁻ with which IOF₃ is isoelectronic.

We therefore conclude that the stereochemistry of the molecular arrangement in IOF_3 is consistent with our assignment of the oxygen atom position rather than that of Viers and Baird¹.

If the intermolecular contacts in the structure are considered (Table 3 and Fig. 1), the IOF₃ molecules are linked into a three-dimensional network through three weak bridging interactions. These are through O with an I...O distance of 2.62 Å, F(1) with an I...F(1) distance of 2.81 Å and F(2) with an I...F(2) distance of 3.11 Å. This last interaction must be very weak, although the I...F distance is less than the sum of Van der Waal's radii (3.5 Å). The two shorter interactions give a distorted octahedral coordination around the iodine atom, which, if the non-bonding electron pair is included, can be considered to be based on a 7-coordinate monocapped octahedral arrangement. This coordination arrangement is similar to that found for the selenium¹³, arsenic¹⁴ and tellurium¹⁵ atoms in [SeF₃]⁺ [Nb₂F₁₁]⁻, SeOF₂,NbF₅, AsF₃,SbF₅ and [TeF₃]⁺[Sb₂F₁₁]⁻ respectively, although in these compounds there are three bonds and three long contacts compared with the four bonds and two long contacts in IOF₃. In all cases, the long interactions are grouped round the position assigned to the non-bonding electron pair on VSEPR theory. The longer interaction from F(2) in IOF₃ also avoids this position, but this contact may be due to the approach to close-packing of the light atoms in the structure, as can be seen from Figure 1.

The structure of IOF_3 is completely different from that of the isoelectronic TeF_4 in the solid state. The tellurium compound ¹⁶ has a fluorine-bridged, zig-zag chain arrangement, with three terminal and two bridging fluorine atoms in a distorted square-pyramidal coordination around tellurium. The non-bonding

electron pair is considered to complete a distorted octahedral arrangement in this case. The $(Te-F)_{bridge}$ distances are similar (2.08 and 2.26 Å) so that the structure can be described as predominantly derived from the covalently-linked infinitechain arrangement with only a minor contribution from the formulation as separate molecules, the complete reverse of the situation in IOF₃.

ACKNOWLEDGEMENTS

We thank Procter and Gamble Ltd. for a grant (to P.T.), I.C.I. Ltd. (Mond Division) for the gift of a fluorine cell and Dr. T. A. Hamor for his amended versions of the computer programs FORDAP, ORFLS, ORFFE and ABSCOR. All calculations were carried out on an English Electric KDF9 computer, and we thank the staff of Birmingham University Computer Centre for their assistance.

REFERENCES

- 1 J. W. VIERS AND H. W. BAIRD, Chem. Commun., (1967) 1093.
- 2 R. D. W. KEMMITT, M. MURRAY, V. M. MCRAE, R. D. PEACOCK AND M. C. R. SYMONS, J. Chem. Soc. (A), (1968) 862.
- 3 E. E. AYNSLEY, R. NICHOLS AND P. L. ROBINSON, J. Chem. Soc., (1953) 623.
- 4 J. W. JEFFERY, J. Sci. Instr., 40 (1963) 494.
- 5 International Tables for X-ray Crystallography, Vol. III, Kynoch Press, Birmingham, U.K., p. 202.
- 6 R. J. GILLESPIE, Molecular Geometry, Van Nostrand Reinhold, New York, 1972.
- 7 R. R. RYAN AND L. B. ASPREY, Acta Crystallogr., B28 (1972) 979.
- 8 K. SELTE AND A. KJEKSHUS, Acta Chem. Scand., 24 (1970) 1913.
- 9 L. Y. Y. CHAN AND F. W. B. EINSTEIN, Can. J. Chem., 49 (1971) 469.
- 10 A. G. ROBIETTE, R. H. BRADLEY AND P. N. BRIER, Chem. Commun., (1971) 1567.
- 11 G. R. JONES, R. D. BURBANK AND N. BARTLETT, Inorg. Chem., 9 (1970) 2264.
- 12 P. TAYLOR, Ph. D. Thesis, University of Birmingham, 1972.
- 13 A. J. EDWARDS AND G. R. JONES, J. Chem. Soc. (A), (1970) 1491; ibid., (1969) 2858.
- 14 A. J. EDWARDS AND R. J. C. SILLS, J. Chem. Soc. (A), (1971) 942.
- 15 A. J. EDWARDS AND P. TAYLOR, J. Chem. Soc. (A), (1973) 2150.
- 16 A. J. EDWARDS AND F. I. HEWAIDY, J. Chem. Soc. (A), (1968) 2977.